
Y1 Computing - Introduction to MATLAB

Getting started with MATLAB:

MATLAB is a high-level technical computing language and interactive environment for
algorithm development, data visualisation, data analysis, and numerical computation.
You can use MATLAB in a wide range of applications, including signal and image
processing, numerical modelling, etc. One of the many things you will like about MATLAB
(and that distinguishes it from many other computer programming systems, such as C++
for instance) is that you can use it interactively. This means you type some commands at
the special MATLAB prompt and get results immediately. The problems solved in this way
can be very simple, like finding a square root, or very complicated, like finding the solution
to a system of differential equations.

In order to start using MATLAB you must become familiar with a few basic techniques.

Start MATLAB from the desktop (Start → All Programs → School of Physics → MATLAB
→ MATLABR2013a). Click on the Help menu and select Examples, then click on Getting
Started.

1
v2.11

By doing so you can access three video tutorials that will help you familiarising with the
MATLAB environment:

1. Getting Started with MATLAB

2. Working in The Development Environment

3. Writing a MATLAB Program

Now connect your earphones to the desktop computer and run the video tutorials. Take
your time to get acquainted with the desktop environment. At this stage you are not
required to learn all the commands used in the videos, but to be able to execute
commands in the command window and to create a script file, save it and run it.

MATLAB has an extremely useful online Help system. At any time you can access the
Help system by clicking on the menu bar or by typing doc + [return] in the command
window. You can ask help on a specific MATLAB command (e.g. plot) by typing doc
plot + [return], or simply by using the search toolbar in the help window.

If you are looking for information on a specific function you can click on the fx symbol near
the >> prompt in the command window, and browse through several MATLAB built-in
functions.

2
v2.11

Where to find the information you need to complete the exercises / additional
reading:

1. the short notes describing each exercise will point you to the
relevant MATLAB functions and commands,

2. detailed explanations on how to use MATLAB commands can
be found in the MATLAB online help (see above). The online help
is exhaustive but could be cumbersome at times: do not hesitate
to ask a demonstrator for guidance!

3. the University library gives open electronic access to the book
“Essential Matlab for Engineers and Scientists”, which you can
consult/download by connecting to this webpage:
http://www.sciencedirect.com/science/book/9780123748836 or
by searching the book in the main Library search engine http://
findit.bham.ac.uk/ .

You are encouraged to read through the relevant Chapters as suggested in the notes
describing each exercise. For instance, you may find reading Chapter 1 a useful
introduction to the main features of MATLAB, and to few basic commands (which are also
explained in the video tutorials described above).

You can now start with the exercises, which will show you how to:

Exercise 1: ! use MATLAB as a calculator, define and handle arrays and matrices 5%

Exercise 2: !solve linear systems of equations 5%

Exercise 3: !create 2-D plots and export figures, create 3-D plots 5%

Exercise 4: !use arrays and save variables 5%

Exercise 5: !define and use your own functions 5%

Exercise 6:! fit functions to data 5%

Exercise 7:! numerical integration 10%

Exercise 8:! perform symbolic computations 5%

3
v2.11

http://www.sciencedirect.com/science/book/9780123748836
http://www.sciencedirect.com/science/book/9780123748836
http://findit.bham.ac.uk/
http://findit.bham.ac.uk/
http://findit.bham.ac.uk/
http://findit.bham.ac.uk/

Exercise 9: ! animate plots 10%

Exercise 10:!solve differential equations 10%

Exercise 11:! numerical errors and interpolation 10%

Exercise 12:!generate sound with MATLAB 25%

Assessment Deadlines:

The deadlines for getting exercises marked off are:

Exercises 1-3:! Week 3
Exercises 4-8:! Week 7
Exercises 9-11:! Week 11
Exercises 12: ! submitted through CANVAS by the end of Week 11

To get one of exercises (1-11) marked, save it as a MATLAB script (.m file) and show it to
a demonstrator. Exercise 12 has to be submitted through CANVAS by the end of Week
11.

4
v2.11

Exercise 1
MATLAB basics

This exercise will test your ability to use MATLAB as a “calculator”, to define variables and
perform simple operations with arrays and matrices.

Part 1 - MATLAB as a calculator

A. Arithmetic operators and elementary math functions are described in the help window
Matlab, Mathematics, Elementary Maths.

As explained in the video tutorials, remember that when you work with arrays, you can
perform element-by-element operations by using the following notation:

+ ! Addition
- ! Subtraction
.* ! Element-by-element multiplication
./ ! Element-by-element division
.^ ! Element-by-element power

e.g. a=[1 2 3]; a.^2 gives [1 4 9]

Note that in MATLAB i and j represent the imaginary unit, and pi represents π. Additional
pre-defined constants are found by searching “math constants” in the help search toolbar
(have a look at the meaning of Inf, NaN and eps).

Evaluate the following expressions (save the list of commands in a script file):

5
v2.11

Part 2 - Variables

A. In this exercise, you are required to evaluate the total energy of an object with rest
mass m and velocity v using the formula here below:

where c is the velocity of light. First, define variables m, v and c with the values 1 Kg, 1 x
108 m/s and 3 x 108 m/s, then compute E.

B. Now define v as an array containing values from 0 to c in steps of 0.1*c, and compute
the corresponding energies as an array.

Part 3 - Matrices

Matrices are two-dimensional arrays of data in the form:

Note that the notation implies that a i,j is the element of A which is stored in the i-th row and
j-th column. The number of rows n need not be the same as the number of columns m. We
say that such a matrix A is of dimension n x m. When n = 1 we have a column vector and
when m = 1 we have a row vector. When n = m = 1, A has a single entry, and is commonly
known as a scalar.

Like an array, a matrix can be created in MATLAB using any name starting with a letter.
Matrices are created with a syntax similar to the one used to define arrays. For example,
the command:

A = [[1,2,3];[4,5,6];[7,8,10]];

puts the matrix

is that in MATLAB one does not have to declare in advance the size of an array. Storage of arrays is dynamic
in the sense that an array with a given name can change size during a MATLAB session.

The MATLAB command

x = exp(1);

creates a single number whose value is e and stores it in the variable whose name is x. This is in fact a 1⇥1
array. The command

y = [0,1,2,3,4,5];

creates the 1⇥6 array whose entries are equally spaced numbers between 0 and 5 and stores it in the variable
y. A quicker way of typing this is y = [0:5]. (More generally, the command [a:b:c] gives a row vector
of numbers from a to c with spacing b. If the spacing b is required to be 1, then it can be left out of the
specification of the vector.) Matrices can change dimension, for example if x and y are created as above,
then the command

y = [y,x]

produces the response

y =

Columns 1 through 7

0 1.0000 2.0000 3.0000 4.0000 5.0000 2.7183

In the example above we created a row vector by separating the numbers by commas. To get a column
vector of numbers you separate them by semi-colons, e.g. the command z = [1;2;3;4;5]; creates a 5⇥ 1
array of equally spaced numbers between 1 and 5.

Matrices of higher dimension are created by analogous arguments. For example, the command

A = [[1,2,3];[4,5,6];[7,8,10]];

puts the matrix 2

4
1 2 3
4 5 6
7 8 10

3

5

into the variable A. Complicated matrices can be built up from simpler ones, for example four matrices A1,
A2, A3, A4 of size n⇥m can be combined to produce a 2n⇥ 2m matrix A = [[A1,A2];[A3,A4]].

On the other hand, if an n ⇥m matrix A has been created then we can easily extract various parts of
it. To extract the second column of A type A(:,2) and to extract the third row type A(3,:). Here is an
extract of a MATLAB session in which various parts of the matrix A created above are extracted.

>>A(:,2) % all rows, column 2

ans =

2
5
8

>>A([1,2],[2,3]) % rows 1 and 2, columns 2 and 3

ans =

7

into the variable A.

1.8 Exercises for Chapter 1

1. Using MATLAB, do the following calculations:

(i) 1 + 2 + 3, (ii)
p

2, (iii) cos(⇡/6).

Note that MATLAB has pi as a built-in approximation for ⇡ (accurate to about 13 decimal places), and
built-in functions sqrt and cos. Look up the manual pages for these if necessary.

2. After MATLAB has done a calculation the result is stored in the variable ans. After you have done (iii)
above, type ans^2 to find cos2(⇡/6). The true value of this is 3

4 . (Check that you know why!) Print
out ans using both format short and format long and compare with the true value. On the other
hand use MATLAB to compute ans-3/4. This illustrates rounding error: the fact that the machine is
finite means that calculations not involving integers are done inexactly with a small error (typically
of size around 10�15 or 10�16). The analysis of the e↵ect of round-o↵ error in calculations is a very
interesting and technical subject, but it is not one of the things that we shall do in this course.

3. The quantities ex and log(x) (log to base e) are computed using the MATLAB commands exp and log.
Look up the manual pages for each of these and then compute e3, log(e3) and e⇡

p
163.

4. Compute sin2 ⇡

6 + cos2 ⇡

6 . (Note that typing sin^2(x) for sin2 x will produce an error!)

2 Second Tutorial: Variables and Graphics

In this tutorial, you will learn
• how to create row and column vectors (one-dimensional arrays) and matrices (two-dimensional arrays),
• how to do simple arithmetic operations (addition, subtraction, and multiplication by a scalar) on arrays,
• how to do array operations, i.e. term-by-term multiplication (.*), division (./), and exponentiation e.g.

by a scalar (.^),
• how to use built-in functions with array arguments,
• how to set up and plot two-dimensional line plots, and
• how to produce animated plots.

2.1 Arrays

The basic data type in MATLAB is the rectangular array, which contains numbers (or even strings of symbols).
MATLAB allows the user to create quite advanced data structures, but for many scientific applications it is
su�cient to work with matrices. These are two-dimensional arrays of data in the form

A =

2

664

a1,1 a1,2 . . a1,m

a2,1 a2,2 . . a2,m

.
a

n,1 a
n,2 . . a

n,m

3

775 .

Note that the notation implies that a
i,j

is the element of A which is stored in the ith row and jth column.
The number of rows n need not be the same as the number of columns m. We say that such a matrix A is
of dimension n ⇥m. When n = 1 we have a column vector and when m = 1 we have a row vector. When
n = m = 1, A has a single entry, and is commonly known as a scalar.

You do not need any prior knowledge of matrices to follow this part of these notes.
A matrix can be created in MATLAB using any name starting with a letter and containing only letters,

numbers and underscores (_). A major distinction between MATLAB and many other programming languages

6

6
v2.11

A. Open the help window and go to Matlab, Getting Started, Matrices and Arrays. Read
the page and familiarise with basic operations with matrices.

Using the function magic (search for magic square in the online help), define three
“magic squares” of dimension 5, 10 and 15, respectively. Then, for each matrix compute
the sum of diagonal elements, the sum of elements in column 1, and of elements in row 5.
Verify that the characteristic sum M associated to each matrix of order n is:

where n is the order of the matrix.

To get your exercise marked, save it as a MATLAB script (.m file)
and show it to a demonstrator.

7
v2.11

! Exercise 2: a plane truss in static equilibrium
solving linear equations

One of the problems encountered most frequently in scientific computation is the solution
of systems of simultaneous linear equations.

With matrix notation, a system of simultaneous linear equations is written Ax = b.

In the most frequent case, when there are as many equations as unknowns, A is a given
square matrix of order n, b is a given column vector of n components, and x is an unknown
column vector of n components.

The solution to Ax = b can be written x = A-1b, where A-1 is the inverse of A. However, in
the vast majority of practical computational problems, it is unnecessary and inadvisable to
actually compute A-1. As an extreme but illustrative example, consider a system consisting
of just one equation, such as:

The best way to solve such a system is by division:

Use of the matrix inverse would lead to

The inverse requires more arithmetic—a division and a multiplication instead of just a
division—and produces a less accurate answer (In Ex. 11 you will learn more about
numerical errors). Similar considerations apply to systems of more than one equation. This
is even true in the common situation where there are several systems of equations with
the same matrix A but different right-hand sides b. Consequently, we shall concentrate on
the direct solution of systems of equations rather than the computation of the inverse.

MATLAB has introduced nonstandard notation using backward slash and forward slash
operators, “\” and “/”.

If A is a matrix of any size and shape and B is a matrix with as many rows as A, then the
solution to the system of simultaneous equations

AX = B

is denoted by

X = A\B.

Chapter 2

Linear Equations

One of the problems encountered most frequently in scientific computation is the
solution of systems of simultaneous linear equations. This chapter covers the solu-
tion of linear systems by Gaussian elimination and the sensitivity of the solution to
errors in the data and roundoÆ errors in the computation.

2.1 Solving Linear Systems
With matrix notation, a system of simultaneous linear equations is written

Ax = b.

In the most frequent case, when there are as many equations as unknowns, A is a
given square matrix of order n, b is a given column vector of n components, and x
is an unknown column vector of n components.

Students of linear algebra learn that the solution to Ax = b can be written
x = A°1b, where A°1 is the inverse of A. However, in the vast majority of practical
computational problems, it is unnecessary and inadvisable to actually compute
A°1. As an extreme but illustrative example, consider a system consisting of just
one equation, such as

7x = 21.

The best way to solve such a system is by division:

x =
21
7

= 3.

Use of the matrix inverse would lead to

x = 7°1 £ 21 = 0.142857£ 21 = 2.99997.

The inverse requires more arithmetic—a division and a multiplication instead of
just a division—and produces a less accurate answer. Similar considerations apply

February 15, 2008

1

Chapter 2

Linear Equations

One of the problems encountered most frequently in scientific computation is the
solution of systems of simultaneous linear equations. This chapter covers the solu-
tion of linear systems by Gaussian elimination and the sensitivity of the solution to
errors in the data and roundoÆ errors in the computation.

2.1 Solving Linear Systems
With matrix notation, a system of simultaneous linear equations is written

Ax = b.

In the most frequent case, when there are as many equations as unknowns, A is a
given square matrix of order n, b is a given column vector of n components, and x
is an unknown column vector of n components.

Students of linear algebra learn that the solution to Ax = b can be written
x = A°1b, where A°1 is the inverse of A. However, in the vast majority of practical
computational problems, it is unnecessary and inadvisable to actually compute
A°1. As an extreme but illustrative example, consider a system consisting of just
one equation, such as

7x = 21.

The best way to solve such a system is by division:

x =
21
7

= 3.

Use of the matrix inverse would lead to

x = 7°1 £ 21 = 0.142857£ 21 = 2.99997.

The inverse requires more arithmetic—a division and a multiplication instead of
just a division—and produces a less accurate answer. Similar considerations apply

February 15, 2008

1

Chapter 2

Linear Equations

One of the problems encountered most frequently in scientific computation is the
solution of systems of simultaneous linear equations. This chapter covers the solu-
tion of linear systems by Gaussian elimination and the sensitivity of the solution to
errors in the data and roundoÆ errors in the computation.

2.1 Solving Linear Systems
With matrix notation, a system of simultaneous linear equations is written

Ax = b.

In the most frequent case, when there are as many equations as unknowns, A is a
given square matrix of order n, b is a given column vector of n components, and x
is an unknown column vector of n components.

Students of linear algebra learn that the solution to Ax = b can be written
x = A°1b, where A°1 is the inverse of A. However, in the vast majority of practical
computational problems, it is unnecessary and inadvisable to actually compute
A°1. As an extreme but illustrative example, consider a system consisting of just
one equation, such as

7x = 21.

The best way to solve such a system is by division:

x =
21
7

= 3.

Use of the matrix inverse would lead to

x = 7°1 £ 21 = 0.142857£ 21 = 2.99997.

The inverse requires more arithmetic—a division and a multiplication instead of
just a division—and produces a less accurate answer. Similar considerations apply

February 15, 2008

1

8
v2.11

Think of this as dividing both sides of the equation by the coefficient matrix A. Because
matrix multiplication is not commutative and A occurs on the left in the original equation,
this is left division.

Similarly, the solution to a system with A on the right and B with as many columns as A, is
obtained by right division,

XA = B,

X = B/A.

This notation applies even if A is not square, so that the number of equations is not the
same as the number of unknowns.

To illustrate the general linear equation solution algorithm, consider an example of order
three:

This, of course, represents the three simultaneous equations

A. Define the matrices A and B in a script, and solve the system of linear equations.

B. The figure below depicts a plane truss having 13 members (the numbered lines)
connecting 8 joints (the numbered circles). The indicated loads, in tons, are applied at
joints 2, 5, and 6, and we want to determine the resulting force on each member of the
truss.

2 Chapter 2. Linear Equations

to systems of more than one equation. This is even true in the common situation
where there are several systems of equations with the same matrix A but diÆerent
right-hand sides b. Consequently, we shall concentrate on the direct solution of
systems of equations rather than the computation of the inverse.

2.2 The MATLAB Backslash Operator
To emphasize the distinction between solving linear equations and computing in-
verses, Matlab has introduced nonstandard notation using backward slash and
forward slash operators, “\” and “/”.

If A is a matrix of any size and shape and B is a matrix with as many rows
as A, then the solution to the system of simultaneous equations

AX = B

is denoted by
X = A\B.

Think of this as dividing both sides of the equation by the coe±cient matrix A.
Because matrix multiplication is not commutative and A occurs on the left in the
original equation, this is left division.

Similarly, the solution to a system with A on the right and B with as many
columns as A,

XA = B,

is obtained by right division,
X = B/A.

This notation applies even if A is not square, so that the number of equations is not
the same as the number of unknowns. However, in this chapter, we limit ourselves
to systems with square coe±cient matrices.

2.3 A 3-by-3 Example
To illustrate the general linear equation solution algorithm, consider an example of
order three: 0

@
10 °7 0
°3 2 6
5 °1 5

1

A

0

@
x1

x2

x3

1

A =

0

@
7
4
6

1

A .

This, of course, represents the three simultaneous equations

10x1 ° 7x2 = 7,

°3x1 + 2x2 + 6x3 = 4,

5x1 ° x2 + 5x3 = 6.

The first step of the solution algorithm uses the first equation to eliminate x1 from
the other equations. This is accomplished by adding 0.3 times the first equation

2 Chapter 2. Linear Equations

to systems of more than one equation. This is even true in the common situation
where there are several systems of equations with the same matrix A but diÆerent
right-hand sides b. Consequently, we shall concentrate on the direct solution of
systems of equations rather than the computation of the inverse.

2.2 The MATLAB Backslash Operator
To emphasize the distinction between solving linear equations and computing in-
verses, Matlab has introduced nonstandard notation using backward slash and
forward slash operators, “\” and “/”.

If A is a matrix of any size and shape and B is a matrix with as many rows
as A, then the solution to the system of simultaneous equations

AX = B

is denoted by
X = A\B.

Think of this as dividing both sides of the equation by the coe±cient matrix A.
Because matrix multiplication is not commutative and A occurs on the left in the
original equation, this is left division.

Similarly, the solution to a system with A on the right and B with as many
columns as A,

XA = B,

is obtained by right division,
X = B/A.

This notation applies even if A is not square, so that the number of equations is not
the same as the number of unknowns. However, in this chapter, we limit ourselves
to systems with square coe±cient matrices.

2.3 A 3-by-3 Example
To illustrate the general linear equation solution algorithm, consider an example of
order three: 0

@
10 °7 0
°3 2 6
5 °1 5

1

A

0

@
x1

x2

x3

1

A =

0

@
7
4
6

1

A .

This, of course, represents the three simultaneous equations

10x1 ° 7x2 = 7,

°3x1 + 2x2 + 6x3 = 4,

5x1 ° x2 + 5x3 = 6.

The first step of the solution algorithm uses the first equation to eliminate x1 from
the other equations. This is accomplished by adding 0.3 times the first equation

32 Chapter 2. Linear Equations

1 2 5 6 8

3 4 7

1 3 5 7 9 11 12

2 6 10 13

4 8

10 15 20

Figure 2.6. A plane truss.

cally. Resolving the member forces into horizontal and vertical components
and defining Æ = 1/

p
2, we obtain the following system of equations for the

member forces f
i

:

Joint 2: f2 = f6,

f3 = 10;
Joint 3: Æf1 = f4 + Æf5,

Æf1 + f3 + Æf5 = 0;
Joint 4: f4 = f8,

f7 = 0;
Joint 5: Æf5 + f6 = Æf9 + f10,

Æf5 + f7 + Æf9 = 15;
Joint 6: f10 = f13,

f11 = 20;
Joint 7: f8 + Æf9 = Æf12,

Æf9 + f11 + Æf12 = 0;
Joint 8: f13 + Æf12 = 0.

Solve this system of equations to find the vector f of member forces.
2.4. Figure 2.7 is the circuit diagram for a small network of resistors.

There are five nodes, eight resistors, and one constant voltage source. We
want to compute the voltage drops between the nodes and the currents around
each of the loops.
Several diÆerent linear systems of equations can be formed to describe this
circuit. Let v

k

, k = 1, . . . , 4, denote the voltage diÆerence between each of
the first four nodes and node number 5 and let i

k

, k = 1, . . . , 4, denote the
clockwise current around each of the loops in the diagram. Ohm’s law says
that the voltage drop across a resistor is the resistance times the current. For

9
v2.11

For the truss to be in static equilibrium, there must be no net force, horizontally or
vertically, at any joint. Thus, we can determine the member forces by equating the
horizontal forces to the left and right at each joint, and similarly equating the vertical forces
upward and downward at each joint. For the eight joints, this would give 16 equations,
which is more than the 13 unknown factors to be determined. For the truss to be statically
determinate, that is, for there to be a unique solution, we assume that joint 1 is rigidly fixed
both horizontally and vertically and that joint 8 is fixed vertically. Resolving the member
forces into horizontal and vertical components and defining ↵ = 1/

p
2 , we obtain the

following system of equations for the member forces fi :

Use matrices to solve this system of linear equations to find the vector f of member forces.

Tip:
you can input large matrices line by line, using the following syntax:
A=[1 2 3 4 5 6 7 8;
 0 0 0 0 0 0 0 0;
...
and close the square bracket at the end of the last line, e.g.:
 0 0 0 0 0 0 0 0]

When the exercise is complete save your work and show it to a
demonstrator.

32 Chapter 2. Linear Equations

1 2 5 6 8

3 4 7

1 3 5 7 9 11 12

2 6 10 13

4 8

10 15 20

Figure 2.6. A plane truss.

cally. Resolving the member forces into horizontal and vertical components
and defining Æ = 1/

p
2, we obtain the following system of equations for the

member forces f
i

:

Joint 2: f2 = f6,

f3 = 10;
Joint 3: Æf1 = f4 + Æf5,

Æf1 + f3 + Æf5 = 0;
Joint 4: f4 = f8,

f7 = 0;
Joint 5: Æf5 + f6 = Æf9 + f10,

Æf5 + f7 + Æf9 = 15;
Joint 6: f10 = f13,

f11 = 20;
Joint 7: f8 + Æf9 = Æf12,

Æf9 + f11 + Æf12 = 0;
Joint 8: f13 + Æf12 = 0.

Solve this system of equations to find the vector f of member forces.
2.4. Figure 2.7 is the circuit diagram for a small network of resistors.

There are five nodes, eight resistors, and one constant voltage source. We
want to compute the voltage drops between the nodes and the currents around
each of the loops.
Several diÆerent linear systems of equations can be formed to describe this
circuit. Let v

k

, k = 1, . . . , 4, denote the voltage diÆerence between each of
the first four nodes and node number 5 and let i

k

, k = 1, . . . , 4, denote the
clockwise current around each of the loops in the diagram. Ohm’s law says
that the voltage drop across a resistor is the resistance times the current. For

10
v2.11

Exercise 3
2D and 3D plot basics

In the first part of this exercise you will learn how construct and format a 2D (x-y) plots. A
description of MATLAB 2D plotting facilities can be found in the Matlab, Getting Started, 2-
D and 3-D plots, or simply by typing doc plot in the command window. Read the page
as well as the documentation about additional useful commands in the “See Also” section
(bottom of the page) such as: xlim, subplot, title, ylabel, xlabel,
legend, grid.

A. Create a plot defining variable x as an array with values between -50 and 50, with a
step of 0.1.

Consider the following functions,

define y1, ..., y4 and plot them using the plot command. To hold several lines on the
same figure use the hold on command. Use different colours and styles for the four lines
(see the example in the help page).

Add a text title on the plot, as well as the appropriate legend. Change the x limits to be -30
and +30.

Export the figure as a pdf file from the figure “file” menu, or using the print command
(e.g. print(gcf, ‘-dpdf’,‘myfile.pdf’)).

B. Consider now the simple exponential function

and x from 0 to 2 in steps of 0.02.

Create a new figure divided in two horizontal plots (using the subplot command). Plot in
the upper subplot y5(x) for A=0.5 and A=1, and in the lower subplot the same functions but

11
v2.11

using a plot with a logarithmic y scale (see semilogy). Add legend, titles, labels, grids,
and export as a pdf figure.

In the next two exercises you will learn about arrays and how to construct and format
three-dimensional plots. MATLAB has a variety of functions for displaying and visualising
data in 3D, either as lines or as various surfaces. Take a look at the following functions in
the MATLAB help:

plot3, scatter3

and read the example on how to create and visualise surfaces in Matlab, Getting Started,
2-D and 3-D plots

C. The first part of the exercise is simply to plot a curve in 3D. Define z as an array
between 0 and 50 with a step of 0.1, and

then plot the curve using plot3. Remember to add axes labels.

D. Use the command meshgrid to define a X, Y grid between -25 and 25 with a step of
0.2. Plot the surface defined by

where

Use the surf, view, shading, subplot and colormap
command to obtain a figure similar to the one shown here.

When the exercise is complete save your
work and show it to a demonstrator.

Further reading:
see Chapter 7 in the e-book “Essential Matlab for
Engineers and Scientists”
http://www.sciencedirect.com/science/article/pii/
B9780123748836000072#

12
v2.11

http://www.sciencedirect.com/science/article/pii/B9780123748836000072#
http://www.sciencedirect.com/science/article/pii/B9780123748836000072#
http://www.sciencedirect.com/science/article/pii/B9780123748836000072#
http://www.sciencedirect.com/science/article/pii/B9780123748836000072#

Exercise 4: Radioactive Decay
arrays, 2D plots and saving variables

Consider the pure isotope A which decays into the unstable isotope B which in turn decays
into the stable isotope C as follows:

A →(TA= 60 minutes) → B (TB= 30 minutes) → C,

where T is the half-life of the isotope.

Decay of A: At time 0 the number of atoms A is a0; at time t the number of atoms A is

where λ is the decay constant of A (λ=ln(2)/T). The decay constant is defined such that
N(t)=N0 e-λt.

Decay of B: At time 0 the number of atoms B is b0=0; at time = t the number of atoms B is

for t>>TB, b(t) → 0 (all atoms of B will have decayed).

Accumulation of C atoms: At time 0 the number of atoms C is c0=0; at time = t the
number of atoms A and B and C is equal to the initial number of atoms a0, i.e. a0=a(t)+b(t)
+c(t) and hence c(t) ca be calculated as the other quantities have been determined above.
At time t the number of atoms C is

for t>>TA or TB, c(t) → a0, and at, b(t) → 0 i.e. all atoms of A and B will have decayed.

In this exercise, you will use equations 1,2, and 3 to create radioactive decay plots and
and save in a file the variables describing the decay.

Define values for the initial number of atoms (1000) and the two half-lives (A 60 minutes
and B 30 minutes). Calculate the two decay constants lambda. Hence, using arrays,
calculate and plot the number of atoms of A, B and C and the total number of atoms at 5
minute intervals over a period of 500 minutes. Arrange the script so that the number of
data points and the start/finish times (and hence the time interval) can be varied.

13
v2.11

You should format your plot to look like the following.

Save in a MATLAB file (see below) the time, the number of atoms of A, B, C, and the total
number of atoms.

To save variables in a file use the save command, for instance:
save(‘output_var’,‘varA’,‘varB’). To load in the workspace the saved variables
simply type load ‘output_var’. This can be useful if you want to store variables which
are the output e.g. of lengthy calculations.

When the exercise is complete save your work and show it to a
demonstrator.

14
v2.11

Exercise 5: N slit diffraction
defining custom functions in MATLAB

Although MATLAB has numerous built-in functions, you can create your own functions by
storing them in separate function files.

Learn how to create functions and how to call them in a script by reading the online
documentation (type doc function, or by search “function” in the help window).

A function file is similar to a script file in that it also has an .m extension. However, it differs
from a script file as it communicates with the MATLAB workspace only through specially
designated input and output arguments.

Functions are indispensable when it comes to breaking a problem down into manageable
logical pieces. In this exercise you are requested to define a simple function, save it in a
separate .m file, and call it from the main script.

The intensity distribution (I) for N slit diffraction is governed by the relationship

where β = πwx/λ, γ = πsx/λ and w is the slit width, s is the slit separation, λ is the
wavelength and x is the displacement from the origin.

Define a function to compute I using as arguments x, w, λ, s and N. Then, in the main
script file, call the function using as input the values given below, and plot the intensity
distribution against x.

A suitable set of parameters is N=4, w=1.7 10-4 m, s=8.5 10-4 m, λ=5 10-7 m,, xmin=-0.003
m, xmax=+0.003 m. Define x as an array of 500 points (consider using the linspace
command).

You should find the following distribution:

I(x) =
sin2 (�)

�

2

sin2 (N�)

sin2 (�)

15
v2.11

The worksheet should be set-up so that the various parameters (N, λ, etc.) can be varied
in order to study the different distributions.

When the exercise is complete, try changing the input parameters and
describe the behaviour to a demonstrator.

Further reading:
see Chapter 10 in the e-book “Essential Matlab for Engineers and Scientists”
http://www.sciencedirect.com/science/article/pii/B9780123748836000102

16
v2.11

http://www.sciencedirect.com/science/article/pii/B9780123748836000102
http://www.sciencedirect.com/science/article/pii/B9780123748836000102

Exercise 6: Least Squares Fit
fitting polynomials and custom functions

The term least squares describes a frequently used approach to solving overdetermined
systems of equations in an approximate sense. Instead of solving the equations exactly,
we seek only to minimize the sum of the squares of the residuals. The least squares
criterion has important statistical interpretations. If appropriate probabilistic assumptions
about underlying error distributions are made, least squares produces what is known as
the maximum-likelihood estimate of the parameters. Even if the probabilistic assumptions
are not satisfied, years of experience have shown that least squares produces useful
results.

In the first part of this exercise you will learn how MATLAB can be used to fit a polynomial
function to experimental data.

First search MATLAB Help for information on polyfit, polyval, and errorbar.

Then

A. Define two arrays, x: [-0.55, 0.73, 1.98, 2.93, 3.93, 4.85, 6.16] and y:
[2.9669, 7.7280, 25.2241, 62.8794, 134.0628, 240.7299, 483.9702].

Fit a third order polynomial to the data using MATLAB polyfit function. Construct a plot
showing x against y (as symbols only) and x against ax3+bx2+cx+d (as line only). To plot
only points consider setting the property: Linestyle, ‘none’ while calling the plot
function, or use the scatter function instead. Finally, add a second plot on the figure
showing the residuals of your fit, i.e. y-(ax3+bx2+cx+d), adding error bars of value 1.5 on
the y axis.

Tip: to construct the vector of error bars, you can use the command ones.

B. Least squares with an arbitrary fitting function: In the remainder of this exercise,
you will learn how to fit an arbitrary function to a set of data. If you know the form of the
required function you can use fminsearch to find the best coefficients. Suppose that you
think that some data should conform to a relation of the form:

To be able to use fminsearch you need to write a MATLAB function that for given values
of a, b and c, calculates the square of the disparity (in the example here below the function
is called merit). Its first argument is a vector of coefficients, its last argument is a vector
of the given data values. The other arguments (in this case, just one) are vectors of free
variables. You can put this function into its own file or (as here) make it into a subfunction.
If you put the following code into a file called fitting.m, then run it, you should see how
good to fit is.

y(x) = ax+ b sin (x) + c

17
v2.11

function fitting

% generates artificial noisy data based on the function fun (see below)
[x y]=generate_data;

% Calls fminsearch: minimises the function "merit"
% Input:
% - function handle (@) (in this case @merit)
% - [] is the argument for additional options, in this case the empty arguemnt
% "[]" stands for "use default options"
% - array with initial guess of the parameters
% - x: array with independent variable
% - y: array with data
%
% Output:
% - bestparam: array of parameters that minimises the sum of squared
% differences
% - min: sum of squared differences for best-fit parameters
%

% Defines array with initial guess of the parameters
param_guess=[5 0.5 50];
% Calls fminsearch
[bestparam min]=fminsearch(@merit,param_guess,[],x,y);
% Evaluate the function using the best-fit parameters
yfit=fun(bestparam,x);

% Plots data and fitted function
 scatter(x,y,60,'k');
 hold on;
 plot(x,yfit,'r','LineWidth',2);
 hold off
 figure(gcf);
 title(sprintf('a= %5.3f, b= %5.3f, c= %5.3f, Residuals=%5.3f',bestparam,min))
 ylabel('Y'); xlabel('X');
 legend('Data','Fit','Location','NorthWest');
 grid on;
end

% Functions

% A. merit: Computes merit function (sum of squared difference between data and
% fitted function)
 function sumsquares=merit(param, X,Y)
 DIFF = fun(param,X)-Y;
 SQ_DIFF = DIFF.^2;
 sumsquares = sum(SQ_DIFF);
 end
% B. fun: fitting function
 function Y=fun(coeff,X)
 a = coeff(1);
 b = coeff(2);
 c = coeff(3);
 Y= a*X+b*sin(X)+c;
 end
% C. generate_data: generates artificial noisy data based on the function fun
 function [x y]=generate_data
 x=1:0.2:15;

18
v2.11

 a=0.9; b=1.5; c=20;
 err_p=0.01;
 y=fun([a b c], x)+err_p*randn(1,numel(x)).*fun([a b c], x);

 end

Note that the choice of starting values of the fitting parameters (param_guess) can affect
the speed of the search or, in case of non-linear fits, the convergence.

Now it’s time for you to fit a different function to some data!

Load the variables in the file data_ex6.mat in your MATLAB workspace. Fit the following
function to the data:

determine the best fitting parameters a and b, and plot the data and the resulting best fit.

When the exercise is complete save your work and show it to a
demonstrator.

y(x) = a e

�x/50 sin (x) + b,

19
v2.11

http://bison.ph.bham.ac.uk/downloads/y1_matlab/data_ex6.mat
http://bison.ph.bham.ac.uk/downloads/y1_matlab/data_ex6.mat

Exercise 7: Black Body Radiation
the for loop and numerical integration

Introduction to the for loop:
In the examples we have seen so far the commands are executed consecutively, working
down the script from the top to the bottom. In real programs you may want to repeat the
same command several times, or perform different calculations in different situations.
Statements that tell the computer which command is to be executed next are fundamental
building blocks for computer programs, and are called control-flow statements. In this
exercise you will learn how to use the “for loop”, for repeating a statement or group of
statements a fixed number of times,

A simple form of such a loop is
 for index = 1:n
 statements
 end

The statements are executed n times with index = 1,2,3,...,n. Here n is a number that must
be fixed before we enter the loop. More generally, the loop may start with the line for
index = j:m:k. Usually j,m and k are integers and k-j is divisible by m. The statements
are executed repeatedly starting from index = j with index incremented by m each time and
continuing until index = k (which is the last time round the loop). If m = 1, we can replace
j:m:k in the first line of the loop by j:k. Even more generally, we can begin with the line
for index = v, where v is a vector. The statements inside the loop are repeatedly
executed with index set to each of the elements of v in turn. Type help for and read the
manual page for the for loop.

Exercise

The radiation intensity per unit area of a black body radiator in the wavelength range λ to λ
+dλ is I(λ)dλ and is governed by Planck's radiation formula

where
h is Planck's constant !! ! 6.6260 10-34 J s

k is Boltzmann's constant ! ! 1.3806 10-23 J/K

c is the velocity of light ! ! 2.9979 108 m/s

T is the absolute temperature ! K

20
v2.11

A. Construct a plot showing the Black Body spectra at a range of temperatures.
Use a function to compute the 2-dimensional array I(λ,T). A suitable temperature range is
3000 K to 8000 K in steps of, say, 1000 K with a wavelength range of 100 nm to 3000 nm
divided into 1000 intervals.

Define an array with temperatures T, and call the function that computes the intensity
inside a for loop.

You can then plot I for each value j of temperature inside the for loop (e.g.
plot(λ,I(:,j))) or use a single plot command outside the loop (e.g. plot(λ,I))).

Plotting I against λ should result in a chart similar to the following:

B. Use the MATLAB function max to compute the wavelength at the maximum intensity for
each temperature. Compare the wavelength of visible light with that corresponding to the
maximum radiation intensity of the Sun (whose radiation spectrum can be approximated to
that of a black body of T≃6000 K).

Tip: The function max(A) gives as output not only the maximum value of A, but also the
index of the maximum values of A.

C. Read the online documentation on how to use the numerical integration routine trapz,
and use it to estimate the area under each of the curves i.e. the total intensity.

Stefan’s Constant (σΤ) can be calculated from the relationship IT = σΤT4. The accepted
value of Stefan's constant (σ) is 5.67 x 10-8 W/m2 K4. Compare this value with your
calculations for various temperatures and wavelength ranges. To improve the value you
obtain for σΤ try increasing the upper limit of the wavelength range considered.

21
v2.11

When the exercise is complete save your work and show it to a
demonstrator.

Further reading:
see Chapter 2 (in particular 2.7) in the e-book “Essential Matlab for Engineers and
Scientists”
http://www.sciencedirect.com/science/article/pii/B9780123748836000023

22
v2.11

http://www.sciencedirect.com/science/article/pii/B9780123748836000023
http://www.sciencedirect.com/science/article/pii/B9780123748836000023

Exercise 8: Some basic calculus
symbolic computations in MATLAB

The Symbolic Math Toolbox is an additional collection of software routines available with
MATLAB that provides tools for solving and manipulating symbolic math expressions,
hence performing differentiation, integration, simplification, transforms, ...

For an introduction to this toolbox, open the help window and look in Symbolic Math
Toolbox → Getting Started. For the exercise that follows you are required to have
understood how to define symbolic variables and expressions, substitute numbers in
symbolic expressions, differentiate and compute indefinite and definite integrals.

Hence the topics you should read in the Getting Started Help pages are:

Symbolic Objects:
• Overview, Symbolic Variables

Creating Symbolic Variables and Expressions:
• Creating Symbolic Variables, Creating Symbolic Expressions

Performing Symbolic Computations:
• Simplifying Symbolic Expressions, Substituting in Symbolic Expressions
• Substituting in Symbolic Expressions: Substituting Symbolic Variables with Numbers
• Differentiating Symbolic Expressions: Derivatives of single-variable expressions)
• Integrating Symbolic Expressions Indefinite and definite integration (only of one-

variable expressions).

This is a simple example on how to define and differentiate symbolic function:
>> syms('x')
>> y=sin(x)^2;
>> diff(y)
ans = 2*cos(x)*sin(x)dy

A. You should now define and differentiate the following functions using the diff operator
in MATLAB (you should also check that you know how to do them yourself!):

23
v2.11

Now simplify the expressions obtained using the command simplify.

B. We can similarly integrate functions using the int. Evaluate the indefinite integrals of
the five functions above. The int command can also be used to perform definite integrals.
Calculate the definite integrals of the five functions over the appropriate ranges:

(1) [0, 1]! (2) [0, π/2]! (3) [0, 1]! (4) [0, 1]! (5) [1, 2]

and finally express the numerical values obtained in a decimal format by converting them
using double, e.g. double(pi/2) → 1.5708.

C. For case (1) compute the definite integral by numerical integration (using trapz as in
Exercise 7) sampling the function on a vector of N equidistant points. Compare the result
with that obtained with symbolic integration. How many points N are needed so that the
relative difference between the numerically computed integral and the exact definite
integral is less than 10-4 ?

Tip: to solve exercise C you are encouraged to use the while loop, a control-flow
statement alternative to the for loop.

The general form of the while statement is

 while (condition)
 statements
 end

The condition is a logical relation and the statements are executed repeatedly while the
condition remains true. The condition is tested each time before the statements are
repeated. It must eventually become false after a finite number of steps, or the program
will never terminate. For further information see MATLAB’s help page on the while loop
and/or Chapter 2 (in particular 2.8) in the e-book “Essential Matlab for Engineers and
Scientists”: http://www.sciencedirect.com/science/article/pii/B9780123748836000023

When the exercise is complete save your work and show it to a
demonstrator.

24
v2.11

http://www.sciencedirect.com/science/article/pii/B9780123748836000023
http://www.sciencedirect.com/science/article/pii/B9780123748836000023

Exercise 9: Wave Motion
animations

In this exercise we will show how to create an animation in MATLAB, and use this feature
to visualise wave motion in one and two dimensions.

The displacement of a wave in one dimension is

where f is the frequency, v the velocity and a the amplitude.

Setting the values a=1 for the amplitude, f=1 for the frequency, and v=1 for the velocity, we
can plot the displacement at successive times using a for loop. By using the getframe
and movie commands we can capture movie frames and play the movie. See the online
help on getframe and movie, as well as the following example:

% define parameters
a=1;
f=1;
v=1;

dt=0.1;
x=linspace(-2,2,100);
j=0;
clear movie1

for t=0:dt:2
 j=j+1;
 plot(x,wave(t,x,f,a,v)); % where wave is a function that
you should define to compute the displacement
 % add text with elapsed time on the plot
 text(0, 0,['t=',num2str(t),' s'])
 % fixes the limits of the y axis
 ylim([-a a])
 % updates the figure
 drawnow
 % save frame j
 movie1(j)=getframe;
end

%% plays the movie once
movie(movie1,1,1/dt)

25
v2.11

You should now animate the following situations; clearly explaining in each case what you
see:

A. A wave of the same amplitude, frequency and velocity as the above case, but moving in
the opposite direction

B. The superposition of the previous two waves.

C. The superposition of two waves of the same amplitude and velocity, but different
frequencies travelling in opposite directions: choose as values a1=a2=1, v1=v2=1, f1=2,
and f2=2.2

D. A surface plot (using surf) of a wave in 2 dimensions of amplitude a=1, frequency f=2,
and velocity v=1 produced by a source in the origin. The equation for a travelling wave in
two dimensions is simply obtained by replacing x by:

Remember the command meshgrid that you used in Ex. 3.

Finally, draw and animate contour plots using the command imagesc(x,y,z) where x
and y are arrays of size n and m, and z is a matrix of size (n,m) (see doc imagesc for
examples).

E. A contour plot of a wave in 2 dimensions with the same amplitude, frequency and
velocity as in the previous case, but produced by sources at the points (1,0) and (-1,0).

F. A contour plot resulting from the interference produced by 5 identical sources equally
spaced between the points (-1,0) and (1,0).

When the exercise is complete save your work and show the movies
to a demonstrator.

26
v2.11

Eq. 1

Exercise 10: Simple Harmonic Motion and Pendulums
solving differential equations

Many of the equations we meet in physics involve derivatives and hence are differential
equations. An important example is Newton’s second law which is a second order
differential equation since it involves acceleration (the second time derivative of
displacement. MATLAB is equipped with several routines to solve differential equations.

The damped Driven Pendulum:

The angular displacement θ(t) in such a pendulum satisfies the second order differential
equation:

where k is called the damping ratio, f is the amplitude and ω the angular frequency of the
forcing term. For simplicity we have set g/l=1 in the equation above, where g is the
gravitational acceleration and l the length of the pendulum.

For small amplitude motion we can replace sin(θ) by θ to obtain the equation for damped
forced simple harmonic motion:

In MATLAB we can solve such an equations by using the ode45 routine, which is invoked
by the command ode45(@function,t,u0), where function defines the right side of
the differential equation you would like to solve (see example below), t a vector specifying
the interval of integration, and u0 a vector of initial conditions.

Many more differential equation solvers are available in MATLAB, and you can find a
description of these in the User’s Guide → Mathematics → Calculus. Most of the
information you need to know to solve this exercise is however presented in the example
below.

As an example, we solve the case of undamped unforced simple harmonic motion.

with the initial conditions θ(0)=0.1, θ’(0)=0.

27
v2.11

MATLAB Ordinary Differential Equation (ODE) solvers accept only first-order differential
equations. To use the solvers with higher-order ODEs, you must rewrite each equation as
an equivalent system of first-order differential equations, in this case:

Then we need to define a function handle to describe the system of two first-order
differential equations in θ and θ’. We do this in a separate function file, which we call e.g.
UnUnfSH.m:

% Function handle for ODE of an unforced, undamped, simple
% harmonic oscillator

function du = UnUnfSH(t,u)

 theta = u(1);
 theta_prime=u(2);

 du = zeros(2,1);

 % first equation in theta
 du(1) = theta_prime;

 % second equation
 du(2) = - theta;
end

Then we define a vector of initial conditions u0=[0.1 0], and a vector specifying the
interval of integration t = 0:0.1:100;

Now all we need to do is run the ode45 command, which will give as output the solution
of the differential equation in the specified t domain (i.e. θ(t) and θ’(t)).

[T, SOL] = ode45(@UnUnfSH, t, u0);

28
v2.11

We can then plot θ(t) by selecting the first column in the solution array using e.g.
plot(T,SOL(:,1)), and obtain the following figure:

Try changing initial conditions and domain of integration to familiarise with the command.

You should now use the ode45 command to investigate damped driven simple
harmonic motion in the following situations:

A. damping but no forcing term, show both under-, over- and critical damping (k < 1, k > 1,
k=1)

B. forcing in each damping case away from resonance (choose f=0.1 and ω=1.2).

C. the damped forced pendulum (Eq. 1) with k=0.05, f=1.5, and ω=1.1 with initial
conditions θ(0)=0.1, θ’(0)=0 and θ(0)=0.101, θ’(0)=0, both plotted on the same graph.
Note the effect on the solution of a small change in the initial conditions. This extreme
sensitivity to initial conditions is the signature of chaos.

When the exercise is complete save your work and show it to a
demonstrator.

29
v2.11

Exercise 11: Numerical Errors and Interpolation

A computer stores floating-point numbers using just a small amount of memory. Typically,
single precision (float in C++) allocates 4 bytes (32 bits) for the representation of a
number, while double precision (double in C++, MATLAB default precision) uses 8 bytes.
A floating point number is represented by its mantissa and exponent (e.g. 1.5e-15, the
decimal mantissa is 1.5 and the exponent is -15). The conventional format for double
precision uses 53 bits to store the mantissa (including 1 bit for the sign) and 11 bits for the
exponent.
The necessarily finite representation of floating-point numbers in terms of bits defines the
maximum range and the number of significant digits.

The maximum range is the magnitude of floating-point numbers given the fixed numbers of
bits used for the exponent. For single precision a typical value is 2+-127 = 10+-38; for double
precision (default in MATLAB) it is typically 2±1023 i.e ~ 10±308. Exceeding the single
precision is not difficult. Consider, for example, the evaluation of the Bohr radius in SI
units,

While its value lies within the range of a single-precision number, the range is exceeded in
the calculation of the numerator and the denominator. The best solution for dealing with
this type of range difficulty is to work in a set of units natural to a problem (in the example
above, work in units of angstroms, the charge of an electron).

A. Range error
Sometimes range problems arise because the numbers in the problem are inherently
large. Let’s consider the example of the factorial function:

In MATLAB you can easily compute n! using the prod command and the colon operator:
nFactorial=prod(1:n)

Determine which is the largest n for which you can compute the factorial function in
MATLAB. When the result is too large to represent as conventional floating-point value,
MATLAB returns Inf , a special floating-point number reserved for representing infinity.

In practice, a common solution to working with very large numbers is to use their
logarithm. Write a MATLAB script to compute log10(n!) for n=200.
To print the result, express it as n!=(mantissa) x 10(exponent), where the exponent is the
integer part of log10(n!), and the mantissa is 10a, where a is the fractional part of log10(x),
and use the following command to print it on screen:

sprintf('n!= %6.5fE%i',mantissa, exponent)

Tip: have a look at the function floor to round the number x to the nearest integer less
than or equal to x.

a0 = 4⇡✏0~2

mee2
' 5.3⇥ 10�11 m

n! = n⇥ (n� 1)⇥ (n� 2)⇥ . . . ⇥ 3⇥ 2⇥ 1

30
v2.11

B. Round-off error
Suppose we wanted to numerically compute f’(x), the derivative of a known function f(x).
The derivative f’(x) can be computed as:

with h → 0. Clearly setting h=0 when evaluating f’(x) will not give us anything useful, but
what if we set h to a very small value, say h=10-300 using double precision?

The answer will still be incorrect due to the second limitation on the representation of
floating-point numbers: the finite number of digits in the mantissa. For double precision the
number of significant digits is about 16 digits. Thus, in double precision the operation
3+10-20 returns an answer of 3 because of round off; using h=10-300 in Eq. 1 may simply
return 0 when evaluating the numerator.

We define the absolute error when computing a derivative as:

where f’(x) is the exact analytical derivative of the function f(x).

Write a MATLAB script that computes and plots in a log-log scale Δ(h) vs h for f(x)=x2 and
x=1. Use h=1, 10-1, 10-2, 10-3, ... , 10-20. Why does Δ(h) first decreases and then increases
as h becomes smaller?

C. Interpolation

Interpolation is the process of defining a function that takes on specified values at
specified points. In MATLAB there are several functions that implement various
interpolation algorithms. All of them have the calling sequence
v = interp_function(x,y,u)

The first two input arguments, x and y, are vectors of the same length that define the
interpolating points. The third input argument, u, is a vector of points where the function is
to be evaluated. The output v is the same length as u and has elements
v(k)=interp_function(x,y,u(k))

Make a plot of your hand. Start with:

! figure('position',get(0,'screensize'))
! axes('position',[0 0 1 1])
! [x,y] = ginput;

f

0(x) = f(x+h)�f(x)
h

�(h) =
���f 0(x)� f(x+h)�f(x)

h

���

31
v2.11

Place your hand on the computer screen. Use the mouse to select a few dozen points
outlining your hand. Terminate the ginput with a carriage return. You might find it easier
to trace your hand on a piece of paper and then put the paper on the computer screen.
You should be able to see the ginput cursor through the paper. Save the variables x and
y into a MATLAB variable (as in Ex 4) so that you can load them in the workspace later.

Now think of x and y as two functions of an independent variable that goes from one to the
number of points you collected. You can interpolate both functions on a finer grid and plot
the result with

! n = length(x);
! s = (1:n)’;
! t = (1:.05:n)’;
! u = interp_function(s,x,t);
! v = interp_function(s,y,t);
! clf reset
! plot(x,y,’.’,u,v,’-’);

where interp_function is just a placeholder for the interpolation function of your
choice.

Try interpolating the points using a piecewise linear interpolation scheme (piecelin) and
a piecewise cubic spline named splinetx. You can download these interpolation
functions (written by C. Moler) here. If you’d like to learn more about splines, have a look
e.g. at http://mathworld.wolfram.com/Spline.html.

When the exercise is complete save your work and show it to a
demonstrator.

32
v2.11

http://bison.ph.bham.ac.uk/downloads/y1_matlab/interp.zip
http://bison.ph.bham.ac.uk/downloads/y1_matlab/interp.zip
http://mathworld.wolfram.com/Spline.html
http://mathworld.wolfram.com/Spline.html

Exercise 12: Stellar Pulsations and Planetary Transits
generating sound with MATLAB

To be submitted though CANVAS by the end of Week 11.

Stars are spheres of self-gravitating gas and, under certain conditions, they pulsate with
resonant, global, acoustic oscillation modes. These (small) oscillations can be detected as
periodic perturbations of the star’s luminosity. Stars as the Sun oscillate in several
oscillation modes at the same time. The spectrum of acoustic oscillation in such stars is
characterised by two main frequencies: νmax, which represents the frequency with
maximum oscillation amplitude, and Δν, which is the typical spacing between consecutive
frequencies.

Δν and νmax are directly related to global stellar properties such as mass M, radius R, and
temperature Teff:

where Rsun and Msun are the radius and mass of the Sun and the temperature is expressed
in Kelvin.

In the case of the Sun the frequencies of oscillations are then of the order of 3000 μHz, i.e.
about 5 minutes.

Frequency

A
m

pl
itu

de

νmax

Δν

⌫
max

= 3090(M/M
sun

)(R/R
sun

)�2(T
e↵

/5777)�1/2 µHz

�⌫ = 134.9 (M/Msun)1/2 (R/Rsun)�3/2 µHz

33
v2.11

Eq. 2

Eq. 1

A. Stellar sound

In MATLAB you can play sound using the sound command. As an example here we
generate and play for 5 seconds a sinusoidal wave of frequency ν=1 KHz, with amplitude
A=1 and random phase constant φ.

fs = 44100; % standard sampling rate
T = 1/fs; % sampling period
t = 0:T:5; % time vector

phi=2*pi*rand(1,1); % random phase
nu=1e3; % frequency in Hertz
X=sin(2*pi*nu*t+phi);
sound(X, fs) ! % play the signal

Let’s now consider acoustic oscillations in the Sun.
Using the solar values of νmax and Δν (from Eq. 1 and 2, assuming the temperature of the
Sun to be Teff=5777 K):

1. Consider the superposition of five pulsation modes with frequencies νi=νmax ± n Δν, with
n=0,1,2. Assume that the perturbation associated to each pulsation is a simple
sinusoidal function fi(t)=A*sin(2π*νi*t+φi). Assume that all pulsation modes have the
same amplitude (A=1), but that the phase at t=0 of each mode is a random number
between 0 and 2π (use the MATLAB command rand(1,1) to generate a random
number between 0 and 1). Consider the same time vector as in the example above, but
convert the frequencies of stellar oscillations into a range of frequencies audible by
humans. A convenient conversion factor is:

! conv=1e5; ! % factor to convert stellar oscillation frequencies (~mHz) to
! ! ! the human hearing range (~kHz).

Play with sound the signal you have generated, i.e. the superposition of five pulsation
modes.

2. Now let’s consider the oscillation frequencies of a star as it evolves in time. By loading
the file star_evolving.mat you will find in the workspace two arrays (radius and
age) describing how the radius of a 1 Msun star (expressed in Rsun) changes with time
(expressed in years). Consider the stellar temperature always fixed to the Solar value.
For each element of the arrays plot a figure with four subplots showing:
a. The perturbation fi(t) due to each of the five oscillation modes in one plot,
b. The total perturbation (sum of the perturbations associated to the five modes)
c. The stellar radius as a function of the age of the star,
d. A sphere representing a star of a given radius. As in the example here below, use

the command sphere and fix the axes limits as the star evolves.

! [x,y,z] = sphere;
! surf(R*x,R*y,R*z) % sphere centred at the origin

! axis square

34
v2.11

http://bison.ph.bham.ac.uk/downloads/y1_matlab/star_evolving.mat
http://bison.ph.bham.ac.uk/downloads/y1_matlab/star_evolving.mat

! rscale=5;
! xlim([-rscale rscale])
! ylim([-rscale rscale])
! zlim([-rscale rscale])
! shading interp

 For each star, generate the signal due to oscillations (as in step 1), and play the sound
while displaying the corresponding figure. You should be able to generate a plot similar to
the one here below.

QA2: How does the sound of stars change as they get older? and why?

B. The Transit Method of Detecting Extrasolar Planets

When a planet passes in front of a star as viewed from Earth, the event is called a “transit”.
On Earth, we can observe an occasional Venus or Mercury transit. These events are seen
as a small black dot creeping across the Sun—Venus or Mercury blocks sunlight as the
planet moves between the Sun and us. Space-borne telescopes, such as CoRoT and

35
v2.11

Kepler, can detect planets by looking for tiny dips in the luminosity of a star when a planet
crosses in front of it—we say the planet transits the star.

A planetary transit in front of a stellar disc causes a decrease of the observed flux which
can be approximated as d=(RP/RS)2, where RP and RS are the radius of the planet and of
the star, respectively. For a star like the Sun, the typical relative variations are 10-4 for
Earth-size planets, and 10-2 for Jupiter-size bodies.

The information we have on the planet depends on our knowledge of the stellar radius,
which can be determined with high accuracy if the star shows acoustic oscillations.

Suppose that a planetary transit with a relative depth of d=1.5 10-5 is detected when
monitoring the luminosity of a star. The star shows pulsations as well, and its oscillation
spectrum is characterised by νmax=1954 μHz and Δν=95.66 μHz. Moreover, we know that
the temperature of the star is the same as that of the Sun.

1. Determine the mass and radius of the star by combining Eq. 1 and 2, then determine
the radius of the transiting planet in units of Earth radii: which planet in the solar system
has a similar radius (QB1)?

2. Finally, use a piecewise linear interpolation (see Ex. 11) to estimate the age of the
planet (assumed to be the same as the age of the star) using the data provided in part
A (star_evolving.mat). Use the stellar radius as the independent variable when
interpolating the age.

Useful astrophysical quantities:
! Rsun=6.9599 105 km
! Rearth=6.371 103 km

36
v2.11

http://bison.ph.bham.ac.uk/downloads/y1_matlab/star_evolving.mat
http://bison.ph.bham.ac.uk/downloads/y1_matlab/star_evolving.mat

To get this exercise marked, please submit the script file (.m file) through CANVAS. The
deadline for submission is the end of your session in Week 11.

Besides having to write a code that produces the required output, you’ll need to:

1. Include comments throughout the code: the marker must be able to follow the code
easily and to understand its logic and function,
2. Correctly label plot axes,
3. Include answers to questions (QA1, QB2) as part of the comments in the script file.

The marking scheme for this exercise is the following:

A1: 7.5%

A2: 5%

B1: 7.5%

B2: 5%

B. Optional - Non-assessed work
MATLAB can be used to create Graphical User Interfaces (GUIs) which are useful to
create more interactive programs. A GUI acts as an interface between the user and the
programme and is based on both input and output.

First, read through Chapter 13 in the e-book
“Essential Matlab for Engineers and Scientists”
http://www.sciencedirect.com/science/article/pii/
B9780123748836000138
and follow the steps in sections13.2 and 13.3 to
familiarise with GUIDE and how to incorporate
and use static and edit text controls, as well as
push buttons.

Input (using edit text controls: νmax, Δν, Teff, and
transit depth).

Output (using static text controls and push
buttons)
- stellar mass, radius and planetary radius
(calculated when clicking on a pushbutton)
- play (clicking on a pushbutton) the sound

generated by acoustic modes in a star with the
specified νmax and Δν (as in 12A).

The final GUI should look like this figure, but you
are welcome to include additional features!

37
v2.11

http://www.sciencedirect.com/science/article/pii/B9780123748836000138
http://www.sciencedirect.com/science/article/pii/B9780123748836000138
http://www.sciencedirect.com/science/article/pii/B9780123748836000138
http://www.sciencedirect.com/science/article/pii/B9780123748836000138

